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Chapter 1

Introduction

This project aims to really formalize the Frobenius Theorem from differential geometry in Lean
4.



Chapter 2

Frobenius Theorem

Consider a smooth manifold M of dimension m. For local questions we can take M = R™,
which could correspond to a chart around some point z, € M. All functions, vector fields and

differential forms are presumed to be smooth (C°).
Definition 1 (involutivity). Let L; = Z:;l f¥(x)0/027, i = 1,...,7 < m, be first order differ-
ential operators, such that the vector fields v;(z) = (f¥(z))", are linearly independent. They
are said to be in involution when there exist functions cf](x) such that

T

LiL;—L;L; =Y ck(z)L,.

k=1
Theorem 2 (local Frobenius). If the first order differential operators L;, i = 1,...,r <'m, are in
involution, then there exist m —r smooth functions u*(z) that satisfy the equations L;u(x) =0
and such that their gradients Vuk(x), k=1,....m —r are linearly independent.

Proof. This proof consists of chaining together several intermediate results, which are proven in
separate lemmas below.

The first step is to replace the L; operators by some better behaved operators L;,, namely
satistying [L],, L] = 0 (Lem. 5(e)) and having a form adapted to a split local coordinate system
(y,2) around z,. The equations Lj,u = 0 and L;u = 0 are equivalent (Lem. 3, 4). Lem. 7
shows that there exists a new local coordinate system (y, Z) on a neighborhood of x, where
Zh=2Z ¥(y, z), which is better adapted to our differential equations. Lem. 6 actually shows that
the contructed coordinates give us the desired solutions via u*(x) = Z*(y(z), 2(x)) O
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Lemma 3. If the L; as in Def. 1 are in infolution, then the L, ="
smooth pointwise invertible aﬁ,, are also in involution.
Proof. 1t is sufficient to compute the commutator
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where the formula for C%/ can be read off from the last equality. O

Lemma 4. For the operators L;, as in Lem. 3, a smooth function u solves Lyu =0, i =1,...,r,
iff it solves L, u=0,1i =1,...,r

Proof. The computation
Liu= Z ol (L)
i—1
shows that L;u =0,i=1,...,r, implies L}, u = 0 for any ¢’ = 1,...,r. O
Lemma 5. For the operators L, from Def. 1, given x, € M, there exists an open coordinate

neighborhood U 3 x, such that (a) there an exists invertible o, as in Lem. 3, (b) there exists a
split local chart (y,z): M DU’ = R" x R™", with (¢) (y(xy), 2(xy)) = (0,0), (d)

, a m—r J a
L, = i ; Fry.2) 55

and (e) [L;,,L;.,} =0, fori',j’ =1,...,r, which expressed in terms of fij, means (f)
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Proof. Start with the coordinates (z!,...,2™) on U and consider the coordinate components
L, = al (x)a—?ﬂ The rank of the matrix al(z,) must be r, otherwise the L, vectors do not
constitute a frame for the distribution 2. Hence, there exists a subset I C {1,...,7} such that
the matrix minor (ag)iem_gjgm is non-singular. Define the coordinates y' = 2l — ()T,
i’ =1,...,r,and 27 = 2I°0) — (2,)I°U), j =1,...,m —r, where I(i’) and I¢(j) is some ordering
of the sets I and its complement I¢. Then, restrict to a sub-neighborhood U” C U that is split
with respect to the (y, z) coordinates.
The new coordinate components are
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Let 7 (y,2) = al( )( (y,2)) and 'y,f(y, z) = a,fc(ﬁ (z(y, 2)), so that by construction 5% (0,0) is
non-singular. Slnce B: U” — Mat(r,r) is smooth (hence a fortiriori continuous) and the subset
of non-singular matrices in Mat(r, r) is open, there is a possibly smaller split sub-neighborhood
U’ C U” on which f8 is everywhere non-singular. So, defining o, (y, z) = (BY (y,2))"" on U”
satisfies the desired conclusions (a), (b), (¢) and (d), where ff, (y,2) = a, (y,2)7 (y, 2).

To prove (e) and (f), consider the computation

[L,,’ Lj/] — Li/Lj/ - L 4/L4/
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Hence, for each fixed i/, 7/, the % components of the right-hand side Vanish7 while those of the

left-hand side equal EZ} : ;f“;, 8ak,, meaning that all components of ¢; / , must vanish, proving
(e). On the other hand, the vanishing of the right-hand side of the last equality proves (f). O

Lemma 6. Consider the operators L;, and the split neighborhood U > xy as in Lem. 5. Let
Z8(y, z) and Z*(y, z) satisfy the inversion identity Z*(y, Z(y, z)) = 2*, for all z on a sufficiently
small neighborhood of z = 0, and for all y on a sufficiently small neighborhood of y = 0. Suppose
that Z7(y, z) satisfies (a) Z7(0,2) = 2/ and (b)

077

97 = (.2) = Ly, Z(y, 2)).

Then
L; Z(y,2) =0, i'=1,..,r,

and vice versa.

Proof. Start by differentiating the inversion identity:

0 0 -
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Recall that being a diffeomorphism, the Jacobian 2 az,J (y, ") non-singular on the sufficiently small

split domain, with (BZ,] (y,2')"t = 3Z] = (y, )‘ S Hence, rearranging the last equality, we
Y,z

find

077 ‘
= (2w rwaw).
2'=Z(y,z)

Hence, if one side of the equality vanishes, then so does the other, which proves the desired
equivalence. O

077 , 5 ,
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Lemma 7. Let Z/(y,z) be as in Lem. 6. Then, (’(t,y,2) = Z/(ty, z) satisfies (7(0,y, z) = 2
and the equations

O Gltyz) = o Sty Gl 7).

Conwersely, if (/(t,y,z) satisfies the initial value problem above, then there exists a sufficiently
small neighborhood of (y,z) = (0,0) for which Z’(ty,z) ewists up to at least t = 1. Then
Zi(y,z) = ¢(U(1,y, 2) satisfies the conditions in the hypotheses of Lem. 6.



Proof. The easy direction is proved by the following computation:
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For the converse direction, consider the following computation, where we use the ODE satis-
fied by ¢’(t,y, z) and the identity from Lem. 5(f):
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Hence, we find that n(t,y, z) = 651./ ¢kt y, 2) —tff, (ty,(t,y, z)) satisfies a linear ODE. Hence, by
the uniqueness of ODE solutions (Lem. 8(b)), if the initial condition 1(0, y, z) = 0 is satisfied, the
solution must identically vanish, n(t,y, z) = 0, which upon setting t = 1 proves that Z7(y, z) =
¢(1,y, 2) satisfies the desired differential equation, (Lem. 8(c)). It remains to check the vanishing

initial condition:

= 0 00..2) 0 F0¢(0,1,2)
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n(0,y, z)

The proof is completed by noting that the inverse function Z(y, z) exists on a sufficiently small

neighborhood of (y, z) = (0,0), because the continuity of gf,f and the property that aa—z,f

—0 k

ensures that Z7(y, z) is an immersion (has non-singular jacobian) on a neighborhood of (y, 2) =
(0,0) and hence a diffeomorphism on a possibly smaller neighborhood (use inverse function
theorem). O

Lemma 8. An ODE initial value problem (a sufficiently general one to cover the one for ¢’ (t,y, z)
in Lem. 7 and the one for n),(t,y,z) in the proof of Lem. 7) (a) has a solution that is jointly
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smooth in (t,y, z), which (b) is unique, and (c) exists (at least) up to time t =1 on a sufficiently
small neighborhood of (y,z) = (0,0).

Proof. This should follow from the Picard-Lindel6f ODE existence and uniqueness theorem with
parameters. O

Definition 9 (differential forms).
Definition 10 (differential ideal).

Theorem 11 (differential form Frobenius). If o, ¢ = 1,...k < m — k are I-forms on M that
generate a closed differential ideal. Then there exist smooth scalar functions u;,(x), i =1,...,m—k
such that the exact 1-forms du,;, i =1,...,m — k generate the same differential ideal.

Definition 12 (tangent distribution). A tangent distribution on a manifold M is a vector sub-
bundle D < TM (equivalently, an embedding of vector bundles).

Definition 13 (Lie bracket). On a manifold M, given two vector fields u, v (sections of the
tangent bundle T M), their Lie bracket w = [u,v] is the vector field that satisfies the identity
w(f) =u(v(f)) —v(u(f)), where vector fields act as first order differential operators on a smooth
function f. In coordinate form, if u = u'9;, v = v'9;, w = w'd;, then v = u'd,vy — v'd,u’. The
vector fields u, v commute (or are in involution in the sense of Def. 1) if [u,v] = 0.

Definition 14 (involutive distribution). A tangent distribution 2 < TM is involutive if, for
any two vector field sections u, v of D, the Lie bracket [u,v] is also a section of D.

Definition 15 (integral submanifold). Given a manifold M with a tangent distribution D < T'M
of rank r (as a vector bundle), a submanifold ¢: N < M passing through x, € M is called an
integral submanifold of the distribution 2 if it is everywhere tangent to 2, To(T'N) C D, where
naturally dim N < r. In the case dim N = r, the integral submanifold is called mazimal (in
dimension,).

Definition 16 (foliation).

Theorem 17 (vector field Frobenius). Let D C T'M be an involutive tangent space distribution
of rank r < m = dim M. Then, for every x, € M, there exists a mazimal integral submanifold
t: R" < M of D such that 1(0) = z,. Moreover, these integral submanifolds collect into a
r-dimensional foliation of M whose leaves are everywhere tangent to the distribution D.
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