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Chapter 1

Introduction

This project aims to really formalize the Frobenius Theorem from differential geometry in Lean
4.
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Chapter 2

Frobenius Theorem

Consider a smooth manifold 𝑀 of dimension 𝑚. For local questions we can take 𝑀 = ℝ𝑚,
which could correspond to a chart around some point 𝑥0 ∈ 𝑀 . All functions, vector fields and
differential forms are presumed to be smooth (𝐶∞).

Definition 1 (involutivity). Let 𝐿𝑖 = ∑𝑚
𝑘=1 𝑓𝑘

𝑖 (𝑥)𝜕/𝜕𝑥𝑗, 𝑖 = 1, … , 𝑟 ≤ 𝑚, be first order differ-
ential operators, such that the vector fields 𝑣𝑖(𝑥) = (𝑓𝑘

𝑖 (𝑥))𝑚
𝑘=1 are linearly independent. They

are said to be in involution when there exist functions 𝑐𝑘
𝑖𝑗(𝑥) such that

𝐿𝑖𝐿𝑗 − 𝐿𝑗𝐿𝑖 =
𝑟

∑
𝑘=1

𝑐𝑘
𝑖𝑗(𝑥)𝐿𝑘.

Theorem 2 (local Frobenius). If the first order differential operators 𝐿𝑖, 𝑖 = 1, … , 𝑟 ≤ 𝑚, are in
involution, then there exist 𝑚 − 𝑟 smooth functions 𝑢𝑘(𝑥) that satisfy the equations 𝐿𝑖𝑢𝑘(𝑥) = 0
and such that their gradients ∇𝑢𝑘(𝑥), 𝑘 = 1, … , 𝑚 − 𝑟 are linearly independent.

Proof. This proof consists of chaining together several intermediate results, which are proven in
separate lemmas below.

The first step is to replace the 𝐿𝑖 operators by some better behaved operators 𝐿′
𝑖′ , namely

satisfying [𝐿′
𝑖′ , 𝐿′

𝑗′ ] = 0 (Lem. 5(e)) and having a form adapted to a split local coordinate system
(𝑦, 𝑧) around 𝑥0. The equations 𝐿′

𝑖′𝑢 = 0 and 𝐿𝑖𝑢 = 0 are equivalent (Lem. 3, 4). Lem. 7
shows that there exists a new local coordinate system (𝑦, ̄𝑍) on a neighborhood of 𝑥0, where

̄𝑍𝑘 = ̄𝑍𝑘(𝑦, 𝑧), which is better adapted to our differential equations. Lem. 6 actually shows that
the contructed coordinates give us the desired solutions via 𝑢𝑘(𝑥) = ̄𝑍𝑘(𝑦(𝑥), 𝑧(𝑥)).
Lemma 3. If the 𝐿𝑖 as in Def. 1 are in infolution, then the 𝐿′

𝑖′ = ∑𝑟
𝑖=1 𝛼𝑖

𝑖′𝐿𝑖, 𝑖′ = 1, … , 𝑟, with
smooth pointwise invertible 𝛼𝑖

𝑖′ , are also in involution.

Proof. It is sufficient to compute the commutator

𝐿′
𝑖′𝐿′

𝑗′ − 𝐿′
𝑗′𝐿′

𝑖′ = 𝛼𝑖
𝑖′𝛼𝑗

𝑗′(𝐿𝑖𝐿𝑗 − 𝐿𝑗𝐿𝑖) + 𝛼𝑖
𝑖′𝐿𝑖(𝛼𝑗

𝑗′)𝐿𝑗 − 𝛼𝑗
𝑗′𝐿𝑗(𝛼𝑖

𝑖′)𝐿𝑖

= 𝛼𝑖
𝑖′𝛼𝑗

𝑗′ (𝑐𝑘
𝑖𝑗 + (𝛼−1)𝑗′

𝑗 𝐿𝑖(𝛼𝑗
𝑗′)𝛿𝑘

𝑗 − (𝛼−1)𝑖′
𝑖 𝐿𝑗(𝛼𝑖

𝑖′)𝛿𝑘
𝑖 ) 𝐿𝑘

= 𝛼𝑖
𝑖′𝛼𝑗

𝑗′ (𝑐𝑘
𝑖𝑗 + (𝛼−1)𝑗′

𝑗 𝐿𝑖(𝛼𝑗
𝑗′)𝛿𝑘

𝑗 − (𝛼−1)𝑖′
𝑖 𝐿𝑗(𝛼𝑖

𝑖′)𝛿𝑘
𝑖 ) (𝛼−1)𝑘′

𝑘 𝐿′
𝑘′

=
𝑟

∑
𝑘′=1

𝑐′𝑘′
𝑖′𝑗′𝐿′

𝑘′ ,
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where the formula for 𝑐′𝑘′
𝑖′𝑗′ can be read off from the last equality.

Lemma 4. For the operators 𝐿′
𝑖′ as in Lem. 3, a smooth function 𝑢 solves 𝐿𝑖𝑢 = 0, 𝑖 = 1, … , 𝑟,

iff it solves 𝐿′
𝑖′𝑢 = 0, 𝑖′ = 1, … , 𝑟.

Proof. The computation

𝐿′
𝑖′𝑢 =

𝑟
∑
𝑖=1

𝛼𝑖
𝑖′(𝐿𝑖𝑢)

shows that 𝐿𝑖𝑢 = 0, 𝑖 = 1, … , 𝑟, implies 𝐿′
𝑖′𝑢 = 0 for any 𝑖′ = 1, … , 𝑟.

Lemma 5. For the operators 𝐿𝑖 from Def. 1, given 𝑥0 ∈ 𝑀 , there exists an open coordinate
neighborhood 𝑈 ∋ 𝑥0 such that (a) there an exists invertible 𝛼𝑖

𝑖′ as in Lem. 3, (b) there exists a
split local chart (𝑦, 𝑧) ∶ 𝑀 ⊃ 𝑈 ′ ≅ ℝ𝑟 × ℝ𝑚−𝑟, with (c) (𝑦(𝑥0), 𝑧(𝑥0)) = (0, 0), (d)

𝐿′
𝑖′ = 𝜕

𝜕𝑦𝑖′ +
𝑚−𝑟
∑
𝑗=1

𝑓𝑗
𝑖′(𝑦, 𝑧) 𝜕

𝜕𝑧𝑗 .

and (e) [𝐿′
𝑖′ , 𝐿′

𝑗′ ] = 0, for 𝑖′, 𝑗′ = 1, … , 𝑟, which expressed in terms of 𝑓𝑗
𝑖′ means (f)

𝜕
𝜕𝑦𝑖′ 𝑓𝑗

𝑗′ +
𝑚−𝑟
∑
𝑘=1

𝑓𝑘
𝑖′

𝜕
𝜕𝑧𝑘 𝑓𝑗

𝑗′ = 𝜕
𝜕𝑦𝑗′ 𝑓𝑗

𝑖′ +
𝑚−𝑟
∑
𝑘=1

𝑓𝑘
𝑗′

𝜕
𝜕𝑧𝑘 𝑓𝑗

𝑖′ .

Proof. Start with the coordinates (𝑥1, … , 𝑥𝑚) on 𝑈 and consider the coordinate components
𝐿𝑖 = 𝑎𝑗

𝑖(𝑥) 𝜕
𝜕𝑥𝑗 . The rank of the matrix 𝑎𝑗

𝑖(𝑥0) must be 𝑟, otherwise the 𝐿𝑖 vectors do not
constitute a frame for the distribution 𝒟. Hence, there exists a subset 𝐼 ⊆ {1, … , 𝑟} such that
the matrix minor (𝑎𝑗

𝑖)𝑖∈𝐼,1≤𝑗≤𝑚 is non-singular. Define the coordinates 𝑦𝑖′ = 𝑥𝐼(𝑖′) − (𝑥0)𝐼(𝑖′),
𝑖′ = 1, … , 𝑟, and 𝑧𝑗 = 𝑥𝐼𝑐(𝑗) − (𝑥0)𝐼𝑐(𝑗), 𝑗 = 1, … , 𝑚 − 𝑟, where 𝐼(𝑖′) and 𝐼𝑐(𝑗) is some ordering
of the sets 𝐼 and its complement 𝐼𝑐. Then, restrict to a sub-neighborhood 𝑈″ ⊆ 𝑈 that is split
with respect to the (𝑦, 𝑧) coordinates.

The new coordinate components are

𝐿𝑖 =
𝑟

∑
𝑖′=1

𝑎𝐼(𝑖′)
𝑖 (𝑥(𝑦, 𝑧)) 𝜕

𝜕𝑦𝑖′ +
𝑚−𝑟
∑
𝑗=1

𝑎𝐼𝑐(𝑗)
𝑖 (𝑥(𝑦, 𝑧)) 𝜕

𝜕𝑧𝑗 .

Let 𝛽𝑖′
𝑖 (𝑦, 𝑧) = 𝑎𝐼(𝑖′)

𝑖 (𝑥(𝑦, 𝑧)) and 𝛾𝑗
𝑖 (𝑦, 𝑧) = 𝑎𝐼𝑐(𝑗)

𝑖 (𝑥(𝑦, 𝑧)), so that by construction 𝛽𝑖′
𝑖 (0, 0) is

non-singular. Since 𝛽 ∶ 𝑈″ → Mat(𝑟, 𝑟) is smooth (hence a fortiriori continuous) and the subset
of non-singular matrices in Mat(𝑟, 𝑟) is open, there is a possibly smaller split sub-neighborhood
𝑈 ′ ⊆ 𝑈″ on which 𝛽 is everywhere non-singular. So, defining 𝛼𝑗

𝑖′(𝑦, 𝑧) = (𝛽𝑖′
𝑖 (𝑦, 𝑧))−1 on 𝑈″

satisfies the desired conclusions (a), (b), (c) and (d), where 𝑓𝑗
𝑖′(𝑦, 𝑧) = 𝛼𝑖

𝑖′(𝑦, 𝑧)𝛾𝑗
𝑖 (𝑦, 𝑧).

To prove (e) and (f), consider the computation

[𝐿′
𝑖′ , 𝐿′

𝑗′ ] = 𝐿′
𝑖′𝐿′

𝑗′ − 𝐿′
𝑗′𝐿′

𝑖′

=
𝑟

∑
𝑘′=1

𝑐′𝑘′
𝑖′𝑗′𝐿′

𝑘′ =
𝑚−𝑟
∑
𝑗=1

( 𝜕
𝜕𝑦𝑖′ 𝑓𝑗

𝑗′ − 𝜕
𝜕𝑦𝑗′ 𝑓𝑗

𝑖′)
𝜕

𝜕𝑧𝑗 +
𝑚−𝑟
∑
𝑘=1

𝑚−𝑟
∑
𝑗=1

(𝑓𝑗
𝑖′

𝜕
𝜕𝑧𝑗 𝑓𝑘

𝑗′ − 𝑓𝑗
𝑗′

𝜕
𝜕𝑧𝑗 𝑓𝑘

𝑖′) 𝜕
𝜕𝑧𝑘

=
𝑚−𝑟
∑
𝑗=1

( 𝜕
𝜕𝑦𝑖′ 𝑓𝑗

𝑗′ +
𝑚−𝑟
∑
𝑘=1

𝑓𝑘
𝑖′

𝜕
𝜕𝑧𝑘 𝑓𝑗

𝑗′ − 𝜕
𝜕𝑦𝑗′ 𝑓𝑗

𝑖′ −
𝑚−𝑟
∑
𝑘=1

𝑓𝑘
𝑗′

𝜕
𝜕𝑧𝑘 𝑓𝑗

𝑖′ .)
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Hence, for each fixed 𝑖′, 𝑗′, the 𝜕
𝜕𝑦𝑘′ components of the right-hand side vanish, while those of the

left-hand side equal ∑𝑚−𝑟
𝑘′=1 𝑐′𝑘′

𝑖′𝑗′
𝜕

𝜕𝑦𝑘′ , meaning that all components of 𝑐′𝑘′
𝑖′𝑗′ must vanish, proving

(e). On the other hand, the vanishing of the right-hand side of the last equality proves (f).

Lemma 6. Consider the operators 𝐿′
𝑖′ and the split neighborhood 𝑈 ∋ 𝑥0 as in Lem. 5. Let

𝑍𝑘(𝑦, 𝑧) and ̄𝑍𝑘(𝑦, 𝑧) satisfy the inversion identity ̄𝑍𝑘(𝑦, 𝑍(𝑦, 𝑧)) = 𝑧𝑘, for all 𝑧 on a sufficiently
small neighborhood of 𝑧 = 0, and for all 𝑦 on a sufficiently small neighborhood of 𝑦 = 0. Suppose
that 𝑍𝑗(𝑦, 𝑧) satisfies (a) 𝑍𝑗(0, 𝑧) = 𝑧𝑗 and (b)

𝜕𝑍𝑗

𝜕𝑦𝑖′ (𝑦, 𝑧) = 𝑓𝑗
𝑖′(𝑦, 𝑍𝑗(𝑦, 𝑧)).

Then
𝐿′

𝑖′ ̄𝑍(𝑦, 𝑧) = 0, 𝑖′ = 1, … , 𝑟,
and vice versa.

Proof. Start by differentiating the inversion identity:

0 = 𝜕
𝜕𝑦𝑖′ 𝑧𝑘 = 𝜕

𝜕𝑦𝑖′
̄𝑍𝑘(𝑦, 𝑍(𝑦, 𝑧))

= 𝜕 ̄𝑍𝑘

𝜕𝑦𝑖′ (𝑦, 𝑧′)∣
𝑧′=𝑍(𝑦,𝑧)

+ 𝜕𝑍𝑗

𝜕𝑦𝑖′ (𝑦, 𝑧) 𝜕 ̄𝑍𝑘

𝜕𝑧′𝑗 (𝑦, 𝑧′)∣
𝑧′=𝑍(𝑦,𝑧)

= (𝜕 ̄𝑍𝑘

𝜕𝑦𝑖′ (𝑦, 𝑧′) + 𝑓𝑗
𝑖′(𝑦, 𝑧′)𝜕 ̄𝑍𝑘

𝜕𝑧′𝑗 (𝑦, 𝑧′))∣
𝑧′=𝑍(𝑦,𝑧)

+ (𝜕𝑍𝑗

𝜕𝑦𝑖′ (𝑦, 𝑧) − 𝑓𝑗
𝑖′(𝑦, 𝑧′)) 𝜕 ̄𝑍𝑘

𝜕𝑧′𝑗 (𝑦, 𝑧′)∣
𝑧′=𝑍(𝑦,𝑧)

.

Recall that being a diffeomorphism, the Jacobian 𝜕 ̄𝑍𝑘
𝜕𝑧′𝑗 (𝑦, 𝑧′) non-singular on the sufficiently small

split domain, with ( 𝜕 ̄𝑍𝑘
𝜕𝑧′𝑗 (𝑦, 𝑧′))−1 = 𝜕𝑍𝑗

𝜕𝑧𝑘 (𝑦, 𝑧)∣
𝑧= ̄𝑍(𝑦,𝑧′)

. Hence, rearranging the last equality, we
find

𝜕𝑍𝑗

𝜕𝑧𝑘 (𝑦, 𝑧)𝐿′
𝑖′ ̄𝑍𝑘(𝑦, 𝑧′)∣

𝑧′=𝑍(𝑦,𝑧)
= − (𝜕𝑍𝑗

𝜕𝑦𝑖′ (𝑦, 𝑧) − 𝑓𝑗
𝑖′(𝑦, 𝑍(𝑦, 𝑧))) .

Hence, if one side of the equality vanishes, then so does the other, which proves the desired
equivalence.

Lemma 7. Let 𝑍𝑗(𝑦, 𝑧) be as in Lem. 6. Then, 𝜁𝑗(𝑡, 𝑦, 𝑧) = 𝑍𝑗(𝑡𝑦, 𝑧) satisfies 𝜁𝑗(0, 𝑦, 𝑧) = 𝑧𝑗

and the equations
𝜕
𝜕𝑡𝜁𝑗(𝑡, 𝑦, 𝑧) = 𝑦𝑖′𝑓𝑗

𝑖′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧)).

Conversely, if 𝜁𝑗(𝑡, 𝑦, 𝑧) satisfies the initial value problem above, then there exists a sufficiently
small neighborhood of (𝑦, 𝑧) = (0, 0) for which 𝑍𝑗(𝑡𝑦, 𝑧) exists up to at least 𝑡 = 1. Then
𝑍𝑗(𝑦, 𝑧) = 𝜁𝑗(1, 𝑦, 𝑧) satisfies the conditions in the hypotheses of Lem. 6.
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Proof. The easy direction is proved by the following computation:

𝜕
𝜕𝑡𝜁𝑗(𝑡, 𝑦, 𝑧) = 𝜕

𝜕𝑡𝑍𝑗(𝑡𝑦, 𝑧)

= 𝑦𝑖′ 𝜕𝑍𝑗

𝜕𝑦′𝑖′ (𝑦′, 𝑧)∣
𝑦′=𝑡𝑦

= 𝑦𝑖′ 𝑓𝑗
𝑖′(𝑦′, 𝑍𝑗(𝑦′, 𝑧))∣

𝑦′=𝑡𝑦

= 𝑦𝑖′𝑓𝑗
𝑖′(𝑡𝑦, 𝑍(𝑡𝑦, 𝑧)) = 𝑦𝑖′𝑓𝑗

𝑖′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧)).

For the converse direction, consider the following computation, where we use the ODE satis-
fied by 𝜁𝑗(𝑡, 𝑦, 𝑧) and the identity from Lem. 5(f):

𝜕
𝜕𝑡 ( 𝜕

𝜕𝑦𝑖′ 𝜁𝑗(𝑡, 𝑦, 𝑧) − 𝑡𝑓𝑗
𝑖′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧))) = 𝜕

𝜕𝑦𝑖′
𝜕
𝜕𝑡𝜁𝑗(𝑡, 𝑦, 𝑧)

− 𝑓𝑗
𝑖′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧)) − 𝑡𝑦𝑗′ 𝜕

𝜕𝑦′𝑗′ 𝑓𝑗
𝑖′(𝑦′, 𝜁(𝑡, 𝑦, 𝑧))∣

𝑦′=𝑡𝑦
− 𝑡 ( 𝜕

𝜕𝑡𝜁𝑘(𝑡, 𝑦, 𝑧)) 𝜕
𝜕𝑧′𝑘 𝑓𝑗

𝑖′(𝑡𝑦, 𝑧′)∣
𝑧′=𝜁(𝑡,𝑦,𝑧)

= 𝜕
𝜕𝑦𝑖′ (𝑦𝑗′𝑓𝑗

𝑗′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧)))

− 𝑓𝑗
𝑖′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧)) − 𝑡𝑦𝑗′ 𝜕

𝜕𝑦′𝑗′ 𝑓𝑗
𝑖′(𝑦′, 𝑧′)∣

𝑦′=𝑡𝑦,𝑧′=𝜁(𝑡,𝑦,𝑧)
− 𝑡𝑦𝑗′ 𝑓𝑘

𝑗′(𝑦′, 𝑧′) 𝜕
𝜕𝑧′𝑘 𝑓𝑗

𝑖′(𝑦′, 𝑧′)∣
𝑦′=𝑡𝑦,𝑧′=𝜁(𝑡,𝑦,𝑧)

= (𝑓𝑗
𝑖′(𝑦′, 𝑧′) + 𝑡𝑦𝑗′ 𝜕

𝜕𝑦′𝑖′ 𝑓𝑗
𝑗′(𝑦′, 𝑧′) + ( 𝜕

𝜕𝑦𝑖′ 𝜁𝑘(𝑡, 𝑦, 𝑧)) 𝑦𝑗′ 𝜕
𝜕𝑧′𝑘 𝑓𝑗

𝑗′(𝑦′, 𝑧′))∣
𝑦′=𝑡𝑦,𝑧′=𝜁(𝑡,𝑦,𝑧)

− (𝑓𝑗
𝑖′(𝑦′, 𝑧′) + 𝑡𝑦𝑗′ 𝜕

𝜕𝑦′𝑖′ 𝑓𝑗
𝑗′(𝑦′, 𝑧′) + 𝑡𝑦𝑗′𝑓𝑘

𝑖′(𝑦′, 𝑧′) 𝜕
𝜕𝑧′𝑘 𝑓𝑗

𝑗′(𝑦′, 𝑧′))∣
𝑦′=𝑡𝑦,𝑧′=𝜁(𝑡,𝑦,𝑧)

= ( 𝜕
𝜕𝑦𝑖′ 𝜁𝑘(𝑡, 𝑦, 𝑧) − 𝑡𝑓𝑘

𝑖′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧))) 𝑦𝑗′ 𝜕
𝜕𝑧′𝑘 𝑓𝑗

𝑗′(𝑦′, 𝑧′)∣
𝑦′=𝑡𝑦,𝑧′=𝜁(𝑡,𝑦,𝑧)

Hence, we find that 𝜂(𝑡, 𝑦, 𝑧) = 𝜕
𝜕𝑦𝑖′ 𝜁𝑘(𝑡, 𝑦, 𝑧)−𝑡𝑓𝑘

𝑖′(𝑡𝑦, 𝜁(𝑡, 𝑦, 𝑧)) satisfies a linear ODE. Hence, by
the uniqueness of ODE solutions (Lem. 8(b)), if the initial condition 𝜂(0, 𝑦, 𝑧) = 0 is satisfied, the
solution must identically vanish, 𝜂(𝑡, 𝑦, 𝑧) = 0, which upon setting 𝑡 = 1 proves that 𝑍𝑗(𝑦, 𝑧) =
𝜁𝑗(1, 𝑦, 𝑧) satisfies the desired differential equation, (Lem. 8(c)). It remains to check the vanishing
initial condition:

𝜂(0, 𝑦, 𝑧) = 𝜕
𝜕𝑦𝑖′ 𝜁𝑗(0, 𝑦, 𝑧) − 0 ⋅ 𝑓𝑗

𝑖′(0𝜁(0, 𝑦, 𝑧))

= 𝜕
𝜕𝑦𝑖′ 𝑧𝑗 − 0 = 0.

The proof is completed by noting that the inverse function ̄𝑍(𝑦, 𝑧) exists on a sufficiently small
neighborhood of (𝑦, 𝑧) = (0, 0), because the continuity of 𝜕𝑍𝑗

𝜕𝑧𝑘 and the property that 𝜕𝑍𝑗
𝜕𝑘𝑧

∣
𝑧=0

= 𝛿𝑗
𝑘

ensures that 𝑍𝑗(𝑦, 𝑧) is an immersion (has non-singular jacobian) on a neighborhood of (𝑦, 𝑧) =
(0, 0) and hence a diffeomorphism on a possibly smaller neighborhood (use inverse function
theorem).

Lemma 8. An ODE initial value problem (a sufficiently general one to cover the one for 𝜁𝑗(𝑡, 𝑦, 𝑧)
in Lem. 7 and the one for 𝜂𝑗

𝑖′(𝑡, 𝑦, 𝑧) in the proof of Lem. 7) (a) has a solution that is jointly
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smooth in (𝑡, 𝑦, 𝑧), which (b) is unique, and (c) exists (at least) up to time 𝑡 = 1 on a sufficiently
small neighborhood of (𝑦, 𝑧) = (0, 0).
Proof. This should follow from the Picard-Lindelöf ODE existence and uniqueness theorem with
parameters.

Definition 9 (differential forms).

Definition 10 (differential ideal).

Theorem 11 (differential form Frobenius). If 𝛼𝑖, 𝑖 = 1, … 𝑘 ≤ 𝑚 − 𝑘 are 1-forms on 𝑀 that
generate a closed differential ideal. Then there exist smooth scalar functions 𝑢𝑖(𝑥), 𝑖 = 1, … , 𝑚−𝑘
such that the exact 1-forms 𝑑𝑢𝑖, 𝑖 = 1, … , 𝑚 − 𝑘 generate the same differential ideal.

Definition 12 (tangent distribution). A tangent distribution on a manifold 𝑀 is a vector sub-
bundle 𝒟 ↪ 𝑇 𝑀 (equivalently, an embedding of vector bundles).

Definition 13 (Lie bracket). On a manifold 𝑀 , given two vector fields 𝑢, 𝑣 (sections of the
tangent bundle 𝑇 𝑀), their Lie bracket 𝑤 = [𝑢, 𝑣] is the vector field that satisfies the identity
𝑤(𝑓) = 𝑢(𝑣(𝑓))−𝑣(𝑢(𝑓)), where vector fields act as first order differential operators on a smooth
function 𝑓 . In coordinate form, if 𝑢 = 𝑢𝑖𝜕𝑖, 𝑣 = 𝑣𝑖𝜕𝑖, 𝑤 = 𝑤𝑖𝜕𝑖, then 𝑤𝑗 = 𝑢𝑖𝜕𝑖𝑣𝑗 − 𝑣𝑖𝜕𝑖𝑢𝑖. The
vector fields 𝑢, 𝑣 commute (or are in involution in the sense of Def. 1) if [𝑢, 𝑣] = 0.

Definition 14 (involutive distribution). A tangent distribution 𝒟 ↪ 𝑇 𝑀 is involutive if, for
any two vector field sections 𝑢, 𝑣 of 𝒟, the Lie bracket [𝑢, 𝑣] is also a section of 𝒟.

Definition 15 (integral submanifold). Given a manifold 𝑀 with a tangent distribution 𝒟 ↪ 𝑇 𝑀
of rank 𝑟 (as a vector bundle), a submanifold 𝜄 ∶ 𝑁 ↪ 𝑀 passing through 𝑥0 ∈ 𝑀 is called an
integral submanifold of the distribution 𝒟 if it is everywhere tangent to 𝒟, 𝑇 𝜄(𝑇 𝑁) ⊆ 𝒟, where
naturally dim 𝑁 ≤ 𝑟. In the case dim 𝑁 = 𝑟, the integral submanifold is called maximal (in
dimension).

Definition 16 (foliation).

Theorem 17 (vector field Frobenius). Let 𝒟 ⊆ 𝑇 𝑀 be an involutive tangent space distribution
of rank 𝑟 ≤ 𝑚 = dim 𝑀 . Then, for every 𝑥0 ∈ 𝑀 , there exists a maximal integral submanifold
𝜄 ∶ ℝ𝑛 ↪ 𝑀 of 𝒟 such that 𝜄(0) = 𝑥0. Moreover, these integral submanifolds collect into a
𝑟-dimensional foliation of 𝑀 whose leaves are everywhere tangent to the distribution 𝒟.
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